Being-M0:具备数据、模型协同特性的人形机器人通用动作生成框架

北京大学和中国人民大学的研究团队在人形机器人动作生成方面取得了重要进展。他们开发了一个名为 Being-M0 的通用动作生成框架,并创建了首个规模达百万级的动作生成数据集 MotionLib。这个数据集通过创新的数据处理流程和详细的标注方法,提取出高质量的动作数据,支持多种数据形式。研究结果表明,利用大量数据和强大模型可以有效提升动作生成效果。团队还提出了 MotionBook 这种新的动作编码方法,进一步优化了动作生成效果。此外,他们通过结合优化和学习的方法,将人体动作高效地应用到多种人形机器人上,为人形机器人的发展提供了有力支持。

Being-M0:具备数据、模型协同特性的人形机器人通用动作生成框架.webp

数据集 MotionLib

  • 规模与标注:MotionLib 是业界首个百万规模的动作生成数据集,包含超过120万段动作序列,并配有分层且详细的文本标注。该数据集通过系统性地从公开数据集和在线平台收集超过2000万段人体动作视频,并开发了一套创新的数据处理流水线。

  • 数据优化:为提升数据质量,团队使用预训练模型进行2D人体关键点估计,并通过置信度阈值筛选,再利用先进模型生成高精度3D关键点数据。此外,还训练了基于强化学习的策略来优化原始动作,使其更符合物理规律。

动作编码方法 MotionBook

  • 二维无查找量化:提出 MotionBook,将动作序列建模为单通道二维“动作图像”,分别在时间轴和关节轴构建独立编码空间,完整保留运动的多维结构特征。这种方法显著扩展了动作编码器的容量,无需查找对应token,提升了动作表示的效率。

模型 Being-M0

  • 性能与规模效应:基于 MotionLib 和 MotionBook,Being-M0 展现了显著的规模效应,验证了“大数据+大模型”在动作生成领域的技术可行性。在同等数据条件下,模型容量与生成质量呈显著正相关,13B参数的LLaMA-2模型相较700M参数的GPT2,在动作多样性和语义对齐精度等核心指标上均实现突破。

  • 跨平台动作迁移:创新融合优化与学习方法,实现了动作数据向多款人形机器人的高效迁移,显著提升了跨平台运动适配能力。

Being-M0:具备数据、模型协同特性的人形机器人通用动作生成框架.webp

项目链接

项目地址:https://beingbeyond.github.io/Being-M0/

论文链接:https://arxiv.org/abs/2410.03311

Github:https://github.com/BeingBeyond/Being-M0

收藏
最新工具
Thea AI
Thea AI

一个专门为学生设计的AI学习平台。它能自动把课堂笔记、PDF文件...

Pose Search
Pose Search

一个开源的人体姿势搜索工具,允许用户根据性别、关节或身体部位来筛...

Linnk AI
Linnk AI

面向研究人员和专业人士的工具,能在网页、PDF 及多种文档里快速...

Mentimeter
Mentimeter

一个让传统演示变得更有趣、更互动的工具。它特别适合用在教育、企业...

落笔AI写作
落笔AI写作

一个专为故事创作者设计的Ai小说写作辅助工具,最大特点是把“找灵...

灵光APP
灵光APP

蚂蚁集团推出的全模态AI助手,它能理解和生成语言、图像、语音与数...

Moakt Email
Moakt Email

一个能提供临时邮箱服务的平台,不用注册就能快速弄出一个一次性的邮...

JOJO看报
JOJO看报

一个能在线看老报纸和杂志的网站,有《人民日报》《参考消息》《红旗...

超级表格
超级表格

一款多人共享的在线表格工具,结合表格与表单功能,支持多人同时查看...

萝卜简历
萝卜简历

一个免费在线简历制作工具,用AI帮应届生和求职者写更贴合岗位的简...